Перевод: с английского на все языки

со всех языков на английский

Society of Mining Engineers

  • 1 Society of Mining Engineers

    Нефтегазовая техника Общество горных инженеров (США)

    Универсальный англо-русский словарь > Society of Mining Engineers

  • 2 Society of Mining Engineers

    Англо-русский словарь нефтегазовой промышленности > Society of Mining Engineers

  • 3 society of mining engineers

    Англо-русский словарь нефтегазовой промышленности > society of mining engineers

  • 4 SME

    Англо-русский словарь нефтегазовой промышленности > SME

  • 5 SME

    1) Компьютерная техника: Simple Menu Entry
    2) Американизм: Small And Medium Enterprise
    7) Вычислительная техника: Storage Management Engine, Storage Management Engine (Novell, Netware, SMS), Solar Mesosphere Explorer (Space), Society of Manufacturing Engineering (organization, USA)
    8) Литература: Sustaining Membership Enrollment
    10) Связь: Small Medium Enterprises
    11) Космонавтика: Solar Mesosphere Explorer
    12) Банковское дело: (smal and medium-sized enterprises) МСБ (малый и средний бизнес)
    13) Пищевая промышленность: Scale Model Engineering, Sunflower Methyl Ester
    16) Нефтегазовая техника Общество горных инженеров (США, Society of Mining Engineers)
    17) Образование: Sales and Marketing Executives, Inc.
    18) Сетевые технологии: Synchronous Modem Eliminator
    22) Безопасность: Short Message Encryption
    25) Хобби: Scale Model Equipment

    Универсальный англо-русский словарь > SME

  • 6 SME

    I сокр. [simulated mine entry] модель штрека II сокр. [Society of Mining Engineers] Общество горных инженеров (США)

    Большой англо-русский и русско-английский словарь > SME

  • 7 SME

    I сокр. от simulated mine entry II сокр. от Society of Mining Engineers

    Англо-русский словарь технических терминов > SME

  • 8 SME

    1. simulated mine entry - модель штрека;
    2. society of mining engineers - общество горных инженеров;
    3. Spartan missile equipment - бортовая аппаратура противоракеты "Спартак"

    Англо-русский словарь технических аббревиатур > SME

  • 9 Garforth, William Edward

    [br]
    b. 1845 Dukinfield, Cheshire, England
    d. 1 October 1921 Pontefract, Yorkshire, England
    [br]
    English colliery manager, pioneer in machine-holing and the safety of mines.
    [br]
    After Menzies conceived his idea of breaking off coal with machines in 1761, many inventors subsequently followed his proposals through into the practice of underground working. More than one century later, Garforth became one of the principal pioneers of machine-holing combined with the longwall method of working in order to reduce production costs and increase the yield of coal. Having been appointed agent to Pope \& Pearson's Collieries, West Yorkshire, in 1879, of which company he later became Managing Director and Chairman, he gathered a great deal of experience with different methods of cutting coal. The first disc machine was exhibited in London as early as 1851, and ten years later a pick machine was invented. In 1893 he introduced an improved type of deep undercutting machine, his "diamond" disc coal-cutter, driven by compressed air, which also became popular on the European continent.
    Besides the considerable economic advantages it created, the use of machinery for mining coal increased the safety of working in hard and thin seams. The improvement of safety in mining technology was always his primary concern, and as a result of his inventions and his many publications he became the leading figure in the British coal mining industry at the beginning of the twentieth century; safety lamps still carry his name. In 1885 he invented a firedamp detector, and following a severe explosion in 1886 he concentrated on coal-dust experiments. From the information he obtained of the effect of stone-dust on a coal-dust explosion he proposed the stone-dust remedy to prevent explosions of coal-dust. As a result of discussions which lasted for decades and after he had been entrusted with the job of conducting the British coal-dust experiments, in 1921 an Act made it compulsory in all mines which were not naturally wet throughout to treat all roads with incombustible dust so as to ensure that the dust always consisted of a mixture containing not more than 50 per cent combustible matter. In 1901 Garforth erected a surface gallery which represented the damaged roadways of a mine and could be filled with noxious fumes to test self-contained breathing apparata. This gallery formed the model from which all the rescue-stations existing nowadays have been developed.
    [br]
    Principal Honours and Distinctions
    Knighted 1914. LLD Universities of Birmingham and Leeds 1912. President, Midland Institute 1892–4. President, The Institution of Mining Engineers 1911–14. President, Mining Association of Great Britain 1907–8. Chairman, Standing Committee on Mining, Advisory Council for Scientific and Industrial Research. Fellow of the Geological Society of London. North of England Institute of Mining and Mechanical Engineers Greenwell Silver Medal 1907. Royal Society of Arts Fothergill Gold Medal 1910. Medal of the Institution of Mining Engineers 1914.
    Bibliography
    1901–2, "The application of coal-cutting machines to deep mining", Transactions of the Federated Institute of Mining Engineers 23: 312–45.
    1905–6, "A new apparatus for rescue-work in mines", Transactions of the Institution of Mining Engineers 31:625–57.
    1902, "British Coal-dust Experiments". Paper communicated to the International Congress on Mining, Metallurgy, Applied Mechanics and Practical Geology, Dusseldorf.
    Further Reading
    Garforth's name is frequently mentioned in connection with coal-holing, but his outstanding achievements in improving safety in mines are only described in W.D.Lloyd, 1921, "Memoir", Transactions of the Institution of Mining Engineers 62:203–5.
    WK

    Biographical history of technology > Garforth, William Edward

  • 10 Blackett, William Cuthbert

    [br]
    b. 18 November 1859 Durham, England
    d. 13 June 1935 Durham, England
    [br]
    English mine manager, expert in preventing mine explosions and inventor of a coal-face conveyor.
    [br]
    After leaving Durham college of Physical Science and having been apprenticed in different mines, he received the certificate for colliery managers and subsequently, in 1887, was appointed Manager of all the mines of Charlaw and Sacriston collieries in Durham. He remained in this position for the rest of his working life.
    Frequent explosions in mines led him to investigate the causes. He was among the first to recognize the role contributed by coal-dust on mine roads, pioneered the use of inert rock-or stone-dust to render the coal-dust harmless and was the originator of many technical terms on the subject. He contributed many papers on explosion and was appointed a member of many advisory committees on prevention measures. A liquid-air rescue apparatus, designed by him and patented in 1910, was installed in various parts of the country.
    Blackett also developed various new devices in mining machinery. He patented a wire-rope socket which made use of a metal wedge; invented a rotary tippler driven by frictional contact instead of gearing and which stopped automatically; and he designed a revolving cylindrical coal-washer, which also gained interest among German mining engineers. His most important invention, the first successful coal-face conveyor, was patented in 1902. It was driven by compressed air and consisted of a trough running along the length of the race through which ran an endless scraper chain. Thus fillers cast the coal into the trough, and the scraper chain drew it to the main gate to be loaded into trams.
    [br]
    Principal Honours and Distinctions
    Knight of Grace of the Order of St John of Jerusalem. OBE. Honorary MSc University of Durham; Honorary LLD University of Birmingham. Honorary Member, Institution of Mining and Metallurgy. Honorary Member, American Institute of Mining and Metallurgical Engineers. Royal Humane Society Medal.
    Further Reading
    Transactions of the Institution of Mining Engineers (1934–5) 89:339–41.
    Mining Association of Great Britain (ed.), 1924, Historical Review of Coal Mining London (describes early mechanical devices for the extraction of coal).
    WK

    Biographical history of technology > Blackett, William Cuthbert

  • 11 Bell, Sir Isaac Lowthian

    [br]
    b. 15 February 1816 Newcastle upon Tyne, England
    d. 20 December 1904 Rounton Grange, Northallerton, Yorkshire, England
    [br]
    English ironworks proprietor, chemical manufacturer and railway director, widely renowned for his scientific pronouncements.
    [br]
    Following an extensive education, in 1835 Bell entered the Tyneside chemical and iron business where his father was a partner; for about five years from 1845 he controlled the ironworks. In 1844, he and his two brothers leased an iron blast-furnace at Wylam on Tyne. In 1850, with partners, he started chemical works at Washington, near Gateshead. A few years later, with his two brothers, he set up the Clarence Ironworks on Teesside. In the 1880s, salt extraction and soda-making were added there; at that time the Bell Brothers' enterprises, including collieries, employed 6,000 people.
    Lowthian Bell was a pioneer in applying thermochemistry to blast-furnace working. Besides his commercial interests, scientific experimentation and international travel, he found time to take a leading part in the promotion of British technical organizations; upon his death he left evidence of a prodigious level of personal activity.
    [br]
    Principal Honours and Distinctions
    Created baronet 1885. FRS 1875. Légion d'honneur 1878. MP, Hartlepool, 1875–80. President: British Iron Trade Association; Iron and Steel Institute; Institution of Mechanical Engineers; North of England Institute of Mining and Mechanical Engineers; Institution of Mining Engineers; Society of the Chemical Industry. Iron and Steel Institute Bessemer Gold Medal 1874 (the first recipient). Society of Arts Albert Medal 1895.
    Bibliography
    The first of several books, Bell's Chemical Phenomena of Iron Smelting… (1872), was soon translated into German, French and Swedish. He was the author of more than forty technical articles.
    Further Reading
    1900–1910, Dictionary of National Biography.
    C.Wilson, 1984, article in Dictionary of Business Biography, Vol. I, ed. J.Jeremy, Butterworth (a more discursive account).
    D.Burn, 1940, The Economic History of Steelmaking, 1867–1939: A Study in Competition, Cambridge (2nd edn 1961).
    JKA

    Biographical history of technology > Bell, Sir Isaac Lowthian

  • 12 Haynes, Elwood

    [br]
    b. 14 October 1857 Portland, Indiana, USA
    d. 13 April 1925 Kokomo, Indiana, USA
    [br]
    American inventor ofStellite cobalt-based alloys, early motor-car manufacturer and pioneer in stainless steels.
    [br]
    From his early years, Haynes was a practising Presbyterian and an active prohibitionist. He graduated in 1881 at Worcester, Massachusetts, and a spell of teaching in his home town was interrupted in 1884–5 while he attended the Johns Hopkins University in Baltimore. In 1886 he became permanently diverted by the discovery of natural gas in Portland. He was soon appointed Superintendent of the local gas undertaking, and then in 1890 he was hired by the Indiana Natural Gas \& Oil Company. While continuing his gas-company employment until 1901, Haynes conducted numerous metallurgical experiments. He also designed an automobile: this led to the establishment of the Haynes- Apperson Company at Kokomo as one of the earliest motor-car makers in North America. From 1905 the firm traded as the Haynes Automobile Company, and before its bankruptcy in 1924 it produced more than 50,000 cars. After 1905, Haynes found the first "Stellite" alloys of cobalt and chromium, and in 1910 he was publicizing the patented material. He then discovered the valuable hardening effect of tungsten, and in 1912 began applying the "improved" Stellite to cutting tools. Three years later, the Haynes Stellite Company was incorporated, with Haynes as President, to work the patents. It was largely from this source that Haynes became a millionaire in 1920. In April 1912, Haynes's attempt to patent the use of chromium with iron to render the product rustless was unsuccessful. However, he re-applied for a US patent on 12 March 1915 and, although this was initially rejected, he persevered and finally obtained recognition of his modified claim. The American Stainless Steel Company licensed the patents of Brearley and Haynes jointly in the USA until the 1930s.
    [br]
    Principal Honours and Distinctions
    John Scott Medal 1919 (awarded for useful inventions).
    Bibliography
    Haynes was the author of more than twenty published papers and articles, among them: 1907, "Materials for automobiles", Proceedings of the American Society of Mechanical
    Engineers 29:1,597–606; 1910, "Alloys of nickel and cobalt with chromium", Journal of Industrial Engineering
    and Chemistry 2:397–401; 1912–13, "Alloys of cobalt with chromium and other metals", Transactions of the American Institute of 'Mining Engineers 44:249–55;
    1919–20, "Stellite and stainless steel", Proceedings of the Engineering Society of West
    Pennsylvania 35:467–74.
    1 April 1919, US patent no. 1,299,404 (stainless steel).
    The four US patents worked by the Haynes Stellite Company were: 17 December 1907, patent no. 873,745.
    1 April 1913, patent no. 1,057,423.
    1 April 1913, patent no. 1,057, 828.
    17 August 1915, patent no. 1,150, 113.
    Further Reading
    R.D.Gray, 1979, Alloys and Automobiles. The Life of Elwood Haynes, Indianapolis: Indiana Historical Society (a closely documented biography).
    JKA

    Biographical history of technology > Haynes, Elwood

  • 13 Rowland, Thomas Fitch

    [br]
    b. 15 March 1831 New Haven, Connecticut, USA
    d. 13 December 1907 New York City, USA
    [br]
    American engineer and manufacturer, inventor of off-shore drilling.
    [br]
    The son of a grist miller, Rowland worked in various jobs until 1859 when he established his own business for the construction of wooden and iron steamships and for structural iron works, in Greenpoint, Long Island, New York. In 1860 he founded the Continental Works and during the American Civil War he started manufacturing gun carriages and mortar beds. He fitted out many vessels for the navy, and as a contractor for John Ericsson he built heavily armoured war vessels.
    He continued shipbuilding, but later diversified his business. He devoted great attention to the design of gas-works, constructing innovative storage facilities all over the United States, and he was concerned with the improvement of welding iron and steel plates and other processes in the steel industry. In the late 1860s he also began the manufacture of steam-engines and boilers for use in the new but expanding oil industry. In 1869 he took out a patent for a fixed platform for drilling for oil off-shore up to a depth of 15 m (49 ft). With this idea, just ten years after Edwin Drake's success in on-shore oil drilling in Titusville, Pennsylvania, Rowland pioneered the technology of off-shore drilling for petroleum in which the United States later became the leading nation.
    [br]
    Principal Honours and Distinctions
    American Society of Civil Engineers: Director 1871–3, Vice-President 1886–7, Honorary Member 1899.
    Further Reading
    "Thomas Fitch Rowland", Dictionary of American Biography.
    WK

    Biographical history of technology > Rowland, Thomas Fitch

  • 14 Sperry, Elmer Ambrose

    [br]
    b. 21 October 1860 Cincinnatus, Cortland County, New York, USA
    d. 16 June 1930 Brooklyn, New York, USA
    [br]
    American entrepreneur who invented the gyrocompass.
    [br]
    Sperry was born into a farming community in Cortland County. He received a rudimentary education at the local school, but an interest in mechanical devices was aroused by the agricultural machinery he saw around him. His attendance at the Normal School in Cortland provided a useful theoretical background to his practical knowledge. He emerged in 1880 with an urge to pursue invention in electrical engineering, then a new and growing branch of technology. Within two years he was able to patent and demonstrate his arc lighting system, complete with its own generator, incorporating new methods of regulating its output. The Sperry Electric Light, Motor and Car Brake Company was set up to make and market the system, but it was difficult to keep pace with electric-lighting developments such as the incandescent lamp and alternating current, and the company ceased in 1887 and was replaced by the Sperry Electric Company, which itself was taken over by the General Electric Company.
    In the 1890s Sperry made useful inventions in electric mining machinery and then in electric street-or tramcars, with his patent electric brake and control system. The patents for the brake were important enough to be bought by General Electric. From 1894 to 1900 he was manufacturing electric motor cars of his own design, and in 1900 he set up a laboratory in Washington, where he pursued various electrochemical processes.
    In 1896 he began to work on the practical application of the principle of the gyroscope, where Sperry achieved his most notable inventions, the first of which was the gyrostabilizer for ships. The relatively narrow-hulled steamship rolled badly in heavy seas and in 1904 Ernst Otto Schuck, a German naval engineer, and Louis Brennan in England began experiments to correct this; their work stimulated Sperry to develop his own device. In 1908 he patented the active gyrostabilizer, which acted to correct a ship's roll as soon as it started. Three years later the US Navy agreed to try it on a destroyer, the USS Worden. The successful trials of the following year led to widespread adoption. Meanwhile, in 1910, Sperry set up the Sperry Gyroscope Company to extend the application to commercial shipping.
    At the same time, Sperry was working to apply the gyroscope principle to the ship's compass. The magnetic compass had worked well in wooden ships, but iron hulls and electrical machinery confused it. The great powers' race to build up their navies instigated an urgent search for a solution. In Germany, Anschütz-Kämpfe (1872–1931) in 1903 tested a form of gyrocompass and was encouraged by the authorities to demonstrate the device on the German flagship, the Deutschland. Its success led Sperry to develop his own version: fortunately for him, the US Navy preferred a home-grown product to a German one and gave Sperry all the backing he needed. A successful trial on a destroyer led to widespread acceptance in the US Navy, and Sperry was soon receiving orders from the British Admiralty and the Russian Navy.
    In the rapidly developing field of aeronautics, automatic stabilization was becoming an urgent need. In 1912 Sperry began work on a gyrostabilizer for aircraft. Two years later he was able to stage a spectacular demonstration of such a device at an air show near Paris.
    Sperry continued research, development and promotion in military and aviation technology almost to the last. In 1926 he sold the Sperry Gyroscope Company to enable him to devote more time to invention.
    [br]
    Principal Honours and Distinctions
    John Fritz Medal 1927. President, American Society of Mechanical Engineers 1928.
    Bibliography
    Sperry filed over 400 patents, of which two can be singled out: 1908. US patent no. 434,048 (ship gyroscope); 1909. US patent no. 519,533 (ship gyrocompass set).
    Further Reading
    T.P.Hughes, 1971, Elmer Sperry, Inventor and Engineer, Baltimore: Johns Hopkins University Press (a full and well-documented biography, with lists of his patents and published writings).
    LRD

    Biographical history of technology > Sperry, Elmer Ambrose

  • 15 Polhem, Christopher

    [br]
    b. 18 December 1661 Tingstade, Gotland, Sweden d. 1751
    [br]
    Swedish engineer and inventor.
    [br]
    He was the eldest son of Wolf Christopher Polhamma, a merchant. The father died in 1669 and the son was sent by his stepfather to an uncle in Stockholm who found him a place in the Deutsche Rechenschule. After the death of his uncle, he was forced to find employment, which he did with the Biorenklou family near Uppsala where he eventually became a kind of estate bailiff. It was during this period that he started to work with a lathe, a forge and at carpentry, displaying great technical ability. He realized that without further education he had little chance of making anything of his life, and accordingly, in 1687, he registered at the University of Uppsala where he studied astronomy and mathematics, remaining there for three years. He also repaired two astronomical pendulum clocks as well as the decrepit medieval clock in the cathedral. After a year's work he had this clock running properly: this was his breakthrough. He was summoned to Stockholm where the King awarded him a salary of 500 dalers a year as an encouragement to further efforts. Around this time, one of increasing mechanization and when mining was Sweden's principal industry, Pohlem made a model of a hoist frame for mines and the Mines Authority encouraged him to develop his ideas. In 1693 Polhem completed the Blankstot hoist at the Stora Kopparberg mine, which attracted great interest on the European continent.
    From 1694 to 1696 Polhem toured factories, mills and mines abroad in Germany, Holland, England and France, studying machinery of all kinds and meeting many foreign engineers. In 1698 he was appointed Director of Mining Engineering in Sweden, and in 1700 he became Master of Construction in the Falu Mine. He installed the Karl XII hoist there, powered by moving beams from a distant water-wheel. His plan of 1697 for all the machinery at the Falu mine to be driven by three large and remote water-wheels was never completed.
    In 1707 he was invited by the Elector of Hanover to visit the mines in the Harz district, where he successfully explained many of his ideas which were adopted by the local engineers. In 1700, in conjunction with Gabriel Stierncrona, he founded the Stiersunds Bruk at Husby in Southern Dalarna, a factory for the mass production of metal goods in iron, steel and bronze. Simple articles such as pans, trays, bowls, knives, scissors and mirrors were made there, together with the more sophisticated Polhem lock and the Stiersunds clock. Production was based on water power. Gear cutting for the clocks, shaping hammers for plates, file cutting and many other operations were all water powered, as was a roller mill for the sheet metal used in the factory. He also designed textile machinery such as stocking looms and spinning frames and machines for the manufacture of ribbons and other things.
    In many of his ideas Polhem was in advance of his time and Swedish country society was unable to absorb them. This was largely the reason for the Stiersund project being only a partial success. Polhem, too, was of a disputatious nature, self-opinionated almost to the point of conceit. He was a prolific writer, leaving over 20,000 pages of manuscript notes, drafts, essays on a wide range of subjects, which included building, brick-making, barrels, wheel-making, bell-casting, organ-building, methods of stopping a horse from bolting and a curious tap "to prevent serving maids from sneaking wine from the cask", the construction of ploughs and threshing machines. His major work, Kort Berattelse om de Fornamsta Mechaniska Inventioner (A Brief Account of the Most Famous Inventions), was printed in 1729 and is the main source of knowledge about his technological work. He is also known for his "mechanical alphabet", a collection of some eighty wooden models of mechanisms for educational purposes. It is in the National Museum of Science and Technology in Stockholm.
    [br]
    Bibliography
    1729, Kort Berattelse om de Fornamsta Mechaniska Inventioner (A Brief Account of the Most Famous Inventions).
    Further Reading
    1985, Christopher Polhem, 1661–1751, TheSwedish Daedalus' (catalogue of a travelling exhibition from the Swedish Institute in association with the National Museum of Science and Technology), Stockholm.
    IMcN

    Biographical history of technology > Polhem, Christopher

  • 16 Pasley, General Sir Charles William

    SUBJECT AREA: Civil engineering
    [br]
    b. 8 September 1780 Eskdalemuir, Dumfriesshire, Scotland
    d. 19 April 1861 London, England
    [br]
    Scottish Colonel-Commandant, Royal Engineers.
    [br]
    At first he was educated by Andrew Little of Lan-gholm. At the age of 14 he was sent to school at Selkirk, where he stayed for two years until joining the Royal Military Academy at Woolwich in August 1796. He was commissioned as Second Lieutenant in the Royal Artillery and transferred to the Royal Engineers on 1 April 1798. He served at Minorca, Malta, Naples, Sicily, Calabria and in the siege of Copenhagen and in other campaigns. He was promoted First Captain in 1807, and was on the staff of Sir John Moore at the battle of Coruna. He was wounded at the siege of Flushing in 1809 and was invalided for a year, employing his time in learning German.
    In November 1810 he published his Essay on Military Policy and Institutions of the British Empire, which ran through four editions. In 1811 he was in command of a company of Royal Military Artificers at Plymouth and there he devised a method of education by which the NCOs and troops could teach themselves without "mathematical masters". His system was a great success and was adopted at Chatham and throughout the corps. In 1812 he was appointed Director of the School of Military Engineering at Chatham. He remained at Chatham until 1841, when he was appointed Inspector-General of Railways. During this period he organized improved systems of sapping, mining, telegraphing, pontooning and exploding gunpowder on land or under water, and prepared pamphlets and courses of instruction in these and other subjects. In May 1836 he started what is probably the most important work for which he is remembered. This, was a book on Limes, Calcareous Cements, Mortar, Stuccos and Concretes. The general adoption of Joseph Aspdin's Portland Cement was largely due to Pasley's recommendation of the material.
    He was married twice: first in 1814 at Chatham to Harriet Cooper; and then on 30 March 1819 at Rochester to Martha Matilda Roberts, with whom he had six children— she died in 1881.
    [br]
    Principal Honours and Distinctions
    KGB 1846. FRS 1816. Honorary DCL, Oxford University 1844.
    Bibliography
    1810, Essay on Military Policy and Institutions of the British Empire. Limes, Calcareous Cements, Mortar, Stuccos and Concretes.
    Further Reading
    Porter, History of the Corps of Royal Engineers. DNB. Proceedings of the Royal Society.
    IMcN

    Biographical history of technology > Pasley, General Sir Charles William

  • 17 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 18 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 19 Chronology

      15,000-3,000 BCE Paleolithic cultures in western Portugal.
      400-200 BCE Greek and Carthaginian trade settlements on coast.
      202 BCE Roman armies invade ancient Lusitania.
      137 BCE Intensive Romanization of Lusitania begins.
      410 CE Germanic tribes — Suevi and Visigoths—begin conquest of Roman Lusitania and Galicia.
      714—16 Muslims begin conquest of Visigothic Lusitania.
      1034 Christian Reconquest frontier reaches Mondego River.
      1064 Christians conquer Coimbra.
      1139 Burgundian Count Afonso Henriques proclaims himself king of Portugal; birth of Portugal. Battle of Ourique: Afonso Henriques defeats Muslims.
      1147 With English Crusaders' help, Portuguese seize Lisbon from Muslims.
      1179 Papacy formally recognizes Portugal's independence (Pope Alexander III).
      1226 Campaign to reclaim Alentejo from Muslims begins.
      1249 Last Muslim city (Silves) falls to Portuguese Army.
      1381 Beginning of third war between Castile and Portugal.
      1383 Master of Aviz, João, proclaimed regent by Lisbon populace.
      1385 April: Master of Aviz, João I, proclaimed king of Portugal by Cortes of Coimbra. 14 August: Battle of Aljubarrota, Castilians defeated by royal forces, with assistance of English army.
      1394 Birth of "Prince Henry the Navigator," son of King João I.
      1415 Beginning of overseas expansion as Portugal captures Moroccan city of Ceuta.
      1419 Discovery of Madeira Islands.
      1425-28 Prince D. Pedro, older brother of Prince Henry, travels in Europe.
      1427 Discovery (or rediscovery?) of Azores Islands.
      1434 Prince Henry the Navigator's ships pass beyond Cape Bojador, West Africa.
      1437 Disaster at Tangier, Morocco, as Portuguese fail to capture city.
      1441 First African slaves from western Africa reach Portugal.
      1460 Death of Prince Henry. Portuguese reach what is now Senegal, West Africa.
      1470s Portuguese explore West African coast and reach what is now Ghana and Nigeria and begin colonizing islands of São Tomé and Príncipe.
      1479 Treaty of Alcáçovas between kings of Portugal and Spain.
      1482 Portuguese establish post at São Jorge da Mina, Gold Coast (now Ghana).
      1482-83 Portuguese navigator Diogo Cão reaches mouth of Congo River and Angola.
      1488 Navigator Bartolomeu Dias rounds Cape of Good Hope, South Africa, and finds route to Indian Ocean.
      1492-93 Columbus's first voyage to West Indies.
      1493 Columbus visits Azores and Portugal on return from first voyage; tells of discovery of New World. Treaty of Tordesillas signed between kings of Portugal and Spain: delimits spheres of conquest with line 370 leagues west of Cape Verde Islands (claimed by Portugal); Portugal's sphere to east of line includes, in effect, Brazil.
       King Manuel I and Royal Council decide to continue seeking all-water route around Africa to Asia.
       King Manuel I expels unconverted Jews from Portugal.
      1497-99 Epic voyage of Vasco da Gama from Portugal around Africa to west India, successful completion of sea route to Asia project; da Gama returns to Portugal with samples of Asian spices.
      1500 Bound for India, Navigator Pedro Álvares Cabral "discovers" coast of Brazil and claims it for Portugal.
      1506 Anti-Jewish riots in Lisbon.
       Battle of Diu, India; Portugal's command of Indian Ocean assured for some time with Francisco de Almeida's naval victory over Egyptian and Gujerati fleets.
       Afonso de Albuquerque conquers Goa, India; beginning of Portuguese hegemony in south Asia.
       Portuguese conquest of Malacca; commerce in Spice Islands.
      1519 Magellan begins circumnavigation voyage.
      1536 Inquisition begins in Portugal.
      1543 Portuguese merchants reach Japan.
      1557 Portuguese merchants granted Chinese territory of Macau for trading factory.
      1572 Luís de Camões publishes epic poem, Os Lusíadas.
      1578 Battle of Alcácer-Quivir; Moroccan forces defeat army of King Sebastião of Portugal; King Sebastião dies in battle. Portuguese succession crisis.
      1580 King Phillip II of Spain claims and conquers Portugal; Spanish rule of Portugal, 1580-1640.
      1607-24 Dutch conquer sections of Asia and Brazil formerly held by Portugal.
      1640 1 December: Portuguese revolution in Lisbon overthrows Spanish rule, restores independence. Beginning of Portugal's Braganza royal dynasty.
      1654 Following Dutch invasions and conquest of parts of Brazil and Angola, Dutch expelled by force.
      1661 Anglo-Portuguese Alliance treaty signed: England pledges to defend Portugal "as if it were England itself." Queen Catherine of Bra-ganza marries England's Charles II.
      1668 February: In Portuguese-Spanish peace treaty, Spain recognizes independence of Portugal, thus ending 28-year War of Restoration.
      1703 Methuen Treaties signed, key commercial trade agreement and defense treaty between England and Portugal.
      1750 Pombal becomes chief minister of King José I.
      1755 1 November: Massive Lisbon earthquake, tidal wave, and fire.
      1759 Expulsion of Jesuits from Portugal and colonies.
      1761 Slavery abolished in continental Portugal.
      1769 Abandonment of Mazagão, Morocco, last Portuguese outpost.
      1777 Pombal dismissed as chief minister by Queen Maria I, after death of José I.
      1791 Portugal and United States establish full diplomatic relations.
      1807 November: First Napoleonic invasion; French forces under Junot conquer Portugal. Royal family flees to colony of Brazil and remains there until 1821.
      1809 Second French invasion of Portugal under General Soult.
      1811 Third French invasion of Portugal under General Masséna.
      1813 Following British general Wellington's military victories, French forces evacuate Portugal.
      1817 Liberal, constitutional movements against absolutist monarchist rule break out in Brazil (Pernambuco) and Portugal (Lisbon, under General Gomes Freire); crushed by government. British marshal of Portugal's army, Beresford, rules Portugal.
       Liberal insurrection in army officer corps breaks out in Cadiz, Spain, and influences similar movement in Portugal's armed forces first in Oporto.
       King João VI returns from Rio de Janeiro, Brazil, and early draft of constitution; era of constitutional monarchy begins.
      1822 7 September: João VI's son Pedro proclaims independence of
       Brazil from Portugal and is named emperor. 23 September: Constitution of 1822 ratified.
       Portugal recognizes sovereign independence of Brazil.
       King João VI dies; power struggle for throne ensues between his sons, brothers Pedro and Miguel; Pedro, emperor of Brazil, abdicates Portuguese throne in favor of his daughter, D. Maria II, too young to assume crown. By agreement, Miguel, uncle of D. Maria, is to accept constitution and rule in her stead.
      1828 Miguel takes throne and abolishes constitution. Sections of Portugal rebel against Miguelite rule.
      1831 Emperor Pedro abdicates throne of Brazil and returns to Portugal to expel King Miguel from Portuguese throne.
      1832-34 Civil war between absolutist King Miguel and constitutionalist Pedro, who abandons throne of Brazil to restore his young daughter Maria to throne of Portugal; Miguel's armed forces defeated by those of Pedro. Miguel leaves for exile and constitution (1826 Charter) is restored.
      1834-53 Constitutional monarchy consolidated under rule of Queen Maria II, who dies in 1853.
      1851-71 Regeneration period of economic development and political stability; public works projects sponsored by Minister Fontes Pereira de Melo.
      1871-90 Rotativism period of alternating party governments; achieves political stability and less military intervention in politics and government. Expansion of colonial territory in tropical Africa.
       January: Following territorial dispute in central Africa, Britain delivers "Ultimatum" to Portugal demanding withdrawal of Portugal's forces from what is now Malawi and Zimbabwe. Portugal's government, humiliated in accepting demand under threat of a diplomatic break, falls. Beginning of governmental and political instability; monarchist decline and republicanism's rise.
       Anglo-Portuguese treaties signed relating to delimitation of frontiers in colonial Africa.
      1899 Treaty of Windsor; renewal of Anglo-Portuguese defense and friendship alliance.
      1903 Triumphal visit of King Edward VII to Portugal.
      1906 Politician João Franco supported by King Carlos I in dictatorship to restore order and reform.
      1908 1 February: Murder in Lisbon of King Carlos I and his heir apparent, Prince Dom Luís, by Portuguese anarchists. Eighteen-year-old King Manuel II assumes throne.
      1910 3-5 October: Following republican-led military insurrection in armed forces, monarchy falls and first Portuguese republic is proclaimed. Beginning of unstable, economically troubled, parliamentary republic form of government.
       May: Violent insurrection in Lisbon overturns government of General Pimenta de Castro; nearly a thousand casualties from several days of armed combat in capital.
       March: Following Portugal's honoring ally Britain's request to confiscate German shipping in Portuguese harbors, Germany declares war on Portugal; Portugal enters World War I on Allied side.
       Portugal organizes and dispatches Portuguese Expeditionary Corps to fight on the Western Front. 9 April: Portuguese forces mauled by German offensive in Battle of Lys. Food rationing and riots in Lisbon. Portuguese military operations in Mozambique against German expedition's invasion from German East Africa. 5 December: Authoritarian, presidentialist government under Major Sidónio Pais takes power in Lisbon, following a successful military coup.
      1918 11 November: Armistice brings cessation of hostilities on Western Front in World War I. Portuguese expeditionary forces stationed in Angola, Mozambique, and Flanders begin return trip to Portugal. 14 December: President Sidónio Pais assassinated. Chaotic period of ephemeral civil war ensues.
      1919-21 Excessively unstable political period, including January
      1919 abortive effort of Portuguese monarchists to restore Braganza dynasty to power. Republican forces prevail, but level of public violence, economic distress, and deprivation remains high.
      1921 October: Political violence attains peak with murder of former prime minister and other prominent political figures in Lisbon. Sectors of armed forces and Guarda Nacional Republicana are mutinous. Year of financial and corruption scandals, including Portuguese bank note (fraud) case; military court acquits guilty military insurrectionists, and one military judge declares "the country is sick."
       28 May: Republic overthrown by military coup or pronunciamento and conspiracy among officer corps. Parliament's doors locked and parliament closed for nearly nine years to January 1935. End of parliamentary republic, Western Europe's most unstable political system in this century, beginning of the Portuguese dictatorship, after 1930 known as the Estado Novo. Officer corps assumes reins of government, initiates military censorship of the press, and suppresses opposition.
       February: Military dictatorship under General Óscar Carmona crushes failed republican armed insurrection in Oporto and Lisbon.
       April: Military dictatorship names Professor Antônio de Oliveira Salazar minister of finance, with dictatorial powers over budget, to stabilize finances and rebuild economy. Insurrectionism among military elements continues into 1931.
      1930 Dr. Salazar named minister for colonies and announces balanced budgets. Salazar consolidates support by various means, including creation of official regime "movement," the National Union. Salazar engineers Colonial Act to ensure Lisbon's control of bankrupt African colonies by means of new fiscal controls and centralization of authority. July: Military dictatorship names Salazar prime minister for first time, and cabinet composition undergoes civilianization; academic colleagues and protégés plan conservative reform and rejuvenation of society, polity, and economy. Regime comes to be called the Estado Novo (New State). New State's constitution ratified by new parliament, the National Assembly; Portugal described in document as "unitary, corporative Republic" and governance influenced by Salazar's stern personality and doctrines such as integralism, Catholicism, and fiscal conservatism.
      1936 Violent instability and ensuing civil war in neighboring Spain, soon internationalized by fascist and communist intervention, shake Estado Novo regime. Pseudofascist period of regime features creation of imitation Fascist institutions to defend regime from leftist threats; Portugal institutes "Portuguese Youth" and "Portuguese Legion."
      1939 3 September: Prime Minister Salazar declares Portugal's neutrality in World War II. October: Anglo-Portuguese agreement grants naval and air base facilities to Britain and later to United States for Battle of the Atlantic and Normandy invasion support. Third Reich protests breach of Portugal's neutrality.
       6 June: On day of Allies' Normandy invasion, Portugal suspends mining and export of wolfram ore to both sides in war.
       8 May: Popular celebrations of Allied victory and Fascist defeat in Lisbon and Oporto coincide with Victory in Europe Day. Following managed elections for Estado Novo's National Assembly in November, regime police, renamed PIDE, with increased powers, represses opposition.
      1947 Abortive military coup in central Portugal easily crushed by regime. Independence of India and initiation of Indian protests against Portuguese colonial rule in Goa and other enclaves.
      1949 Portugal becomes founding member of NATO.
      1951 Portugal alters constitution and renames overseas colonies "Overseas Provinces." Portugal and United States sign military base agreements for use of air and naval facilities in Azores Islands and military aid to Lisbon. President Carmona dies in office, succeeded by General Craveiro Lopes (1951-58). July: Indians occupy enclave of Portuguese India (dependency of Damão) by means of passive resistance movement. August: Indian passive resistance movement in Portuguese India repelled by Portuguese forces with loss of life. December: With U.S. backing, Portugal admitted as member of United Nations (along with Spain). Air force general Humberto Delgado, in opposition, challenges Estado Novo's hand-picked successor to Craveiro Lopes, Admiral Américo Tomás. Delgado rallies coalition of democratic, liberal, and communist opposition but loses rigged election and later flees to exile in Brazil. Portugal joins European Free Trade Association (EFTA).
       January and February: Estado Novo rocked by armed African insurrection in northern Angola, crushed by armed forces. Hijacking of Portuguese ocean liner by ally of Delgado, Captain Henrique Galvão. April: Salazar defeats attempted military coup and reshuffles cabinet with group of younger figures who seek to reform colonial rule and strengthen the regime's image abroad. 18 December: Indian army rapidly defeats Portugal's defense force in Goa, Damão, and Diu and incorporates Portugal's Indian possessions into Indian Union. January: Abortive military coup in Beja, Portugal.
      1965 February: General Delgado and his Brazilian secretary murdered and secretly buried near Spanish frontier by political police, PIDE.
      1968 August and September: Prime Minister Salazar, aged 79, suffers crippling stoke. President Tomás names former cabinet officer Marcello Caetano as Salazar's successor. Caetano institutes modest reforms in Portugal and overseas.
      1971 Caetano government ratifies amended constitution that allows slight devolution and autonomy to overseas provinces in Africa and Asia. Right-wing loyalists oppose reforms in Portugal. 25 April: Military coup engineered by Armed Forces Movement overthrows Estado Novo and establishes provisional government emphasizing democratization, development, and decolonization. Limited resistance by loyalists. President Tomás and Premier Caetano flown to exile first in Madeira and then in Brazil. General Spínola appointed president. September: Revolution moves to left, as President Spínola, thwarted in his program, resigns.
       March: Military coup by conservative forces fails, and leftist response includes nationalization of major portion of economy. Polarization between forces and parties of left and right. 25 November: Military coup by moderate military elements thwarts leftist forces. Constituent Assembly prepares constitution. Revolution moves from left to center and then right.
       March: Constitution ratified by Assembly of the Republic. 25 April: Second general legislative election gives largest share of seats to Socialist Party (PS). Former oppositionist lawyer, Mário Soares, elected deputy and named prime minister.
      1977-85 Political pendulum of democratic Portugal moves from center-left to center-right, as Social Democratic Party (PSD) increases hold on assembly and take office under Prime Minister Cavaco Silva. July
      1985 elections give edge to PSD who advocate strong free-enterprise measures and revision of leftist-generated 1976 Constitution, amended modestly in 1982.
      1986 January: Portugal joins European Economic Community (EEC).
      1987 July: General, legislative elections for assembly give more than 50 percent to PSD led by Prime Minister Cavaco Silva. For first time, since 1974, Portugal has a working majority government.
      1989 June: Following revisions of 1976 Constitution, reprivatization of economy begins, under PS government.
       January: Presidential elections, Mário Soares reelected for second term. July: General, legislative elections for assembly result in new PSD victory and majority government.
       January-July: Portugal holds presidency of the Council of the European Economic Community (EEC). December: Tariff barriers fall as fully integrated Common Market established in the EEC.
       November: Treaty of Maastricht comes into force. The EEC officially becomes the European Union (EU). Portugal is signatory with 11 other member-nations.
       October: General, legislative elections for assembly result in PS victory and naming of Prime Minister Guterres. PS replace PSD as leading political party. November: Excavations for Lisbon bank uncover ancient Phoenician, Roman, and Christian ruins.
       January: General, presidential elections; socialist Jorge Sampaio defeats PSD's Cavaco Silva and assumes presidency from Dr. Mário Soares. July: Community of Portuguese Languages Countries (CPLP) cofounded by Portugal and Brazil.
       May-September: Expo '98 held in Lisbon. Opening of Vasco da Gama Bridge across Tagus River, Europe's longest (17 kilometers/ 11 miles). June: National referendum on abortion law change defeated after low voter turnout. November: National referendum on regionaliza-tion and devolution of power defeated after another low voter turnout.
       October: General, legislative elections: PS victory over PSD lacks clear majority in parliament. Following East Timor referendum, which votes for independence and withdrawal of Indonesia, outburst of popular outrage in streets, media, and communications of Portugal approves armed intervention and administration of United Nations (and withdrawal of Indonesia) in East Timor. Portugal and Indonesia restore diplomatic relations. December: A Special Territory since 1975, Colony of Macau transferred to sovereignty of People's Republic of China.
       January-June: Portugal holds presidency of the Council of the EU; end of Discoveries Historical Commemoration Cycle (1988-2000).
       United Nations forces continue to occupy and administer former colony of East Timor, with Portugal's approval.
       January: General, presidential elections; PS president Sampaio reelected for second term. City of Oporto, "European City of Culture" for the year, hosts arts festival. December: Municipal elections: PSD defeats PS; socialist prime minister Guterres resigns; President Sampaio calls March parliamentary elections.
       1 January: Portugal enters single European Currency system. Euro currency adopted and ceases use of former national currency, the escudo. March: Parliamentary elections; PSD defeats PS and José Durão Barroso becomes prime minister. Military modernization law passed. Portugal holds chairmanship of Organization for Security and Co-operation in Europe (OSCE).
       May: Municipal law passed permitting municipalities to reorganize in new ways.
       June: Prime Minister Durão Barroso, invited to succeed Romano Prodi as president of EU Commission, resigns. Pedro Santana Lopes becomes prime minister. European Parliament elections held. Conscription for national service in army and navy ended. Mass grave uncovered at Academy of Sciences Museum, Lisbon, revealing remains of several thousand victims of Lisbon earthquake, 1755.
       February: Parliamentary elections; PS defeats PSD, socialists win first absolute majority in parliament since 1975. José Sócrates becomes prime minister.
       January: Presidential elections; PSD candidate Aníbal Cavaco Silva elected and assumes presidency from Jorge Sampaio. Portugal's national soccer team ranked 7th out of 205 countries by international soccer association. European Union's Bologna Process in educational reform initiated in Portugal.
       July-December: Portugal holds presidency of the Council of the European Union. For reasons of economy, Portugal announces closure of many consulates, especially in France and the eastern US. Government begins official inspections of private institutions of higher education, following scandals.
      2008 January: Prime Minister Sócrates announces location of new Lisbon area airport as Alcochete, on south bank of Tagus River, site of air force shooting range. February: Portuguese Army begins to receive new modern battle tanks (Leopard 2 A6). March: Mass protest of 85,000 public school (primary and secondary levels) teachers in Lisbon schools dispute recent educational policies of minister of education and prime minister.

    Historical dictionary of Portugal > Chronology

См. также в других словарях:

  • Society of Petroleum Engineers — The Society of Petroleum Engineers (SPE) is a professional organization whose mission is to collect, disseminate, and exchange technical knowledge concerning the exploration, development and production of oil and gas resources and related… …   Wikipedia

  • Mining engineering — Surface coal mine with haul truck in foreground Mining engineering is an engineering discipline that involves the practice, the theory, the science, the technology, and application of extracting and processing minerals from a naturally occurring… …   Wikipedia

  • mining — /muy ning/, n. 1. the act, process, or industry of extracting ores, coal, etc., from mines. 2. the laying of explosive mines. [1250 1300; ME: undermining (walls in an attack); see MINE2, ING1] * * * I Excavation of materials from the Earth s… …   Universalium

  • Mining in Cornwall — first began in the early Bronze Age approximately 2,150 BC and ended with the South Crofty tin mine closing in 1998.HistoryMining in Cornwall has existed from the early Bronze Age around 2,150 B.C. Cornwall is thought to have been visited by… …   Wikipedia

  • Mining in Cornwall and Devon — Ruin of Cornish tin mine …   Wikipedia

  • Society of the Song Dynasty — …   Wikipedia

  • North of England Institute of Mining and Mechanical Engineers — The North of England Institute of Mining and Mechanical Engineers (NEIMME) is a British institution[clarification needed] dedicated to the research and preservation of knowledge relating to mining and mechanical engineering. Founded in 1852, the… …   Wikipedia

  • Engineering society — An engineering society is a professional organization for engineers of various disciplines. Some are umbrella type organizations which accept many different disciplines, while others are discipline specific. Many award professional designations,… …   Wikipedia

  • Copper mining in the United States — US primary copper production 1900 2008. Source: USGS …   Wikipedia

  • American Engineers' Council for Professional Development — The American Engineers Council for Professional Development or simply the Engineers Council for Professional Development, also known by the acronym ECPD and established in June 1932, [http://www.worldcatlibraries.org/oclc/20011758 referer=brief… …   Wikipedia

  • American Institute of Mining, Metallurgical, and Petroleum Engineers — The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) is a professional body for mining and metallurgy, with 90,000 members. It was founded in 1871 by 22 mining engineers in Wilkes Barre, Pennsylvania, United States,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»